
Building the Business Case for
Developer Experience

Building the Business Case for
Developer Experience

devtron.aihttps://devtron.ai

As a DevOps or platform engineering lead/manager, you should be familiar with this situation: Your engineers are inundated
with requests to maintain environments and manage integrations, particularly from those onboarding to your organization
or Kubernetes for the first time. They’ve tried to build a complex CI/CD pipeline to catch errors early and deploy released
on time, but their constant backlog has led to a daisy chain of ungoverned custom scripts.

In response, you decide to templatize all your Kubernetes configurations to strictly enforce how developers use the
Kubernetes environment going forward. In the aftermath, your DevOps team indeed finds their workload lightened, but at
the expense of your downstream developers, who lose hours struggling to adapt to new paradigms that affect their release
velocity and quality control.

Instead of an investment that returns long-term, compounding impact for your customer—the internal developer—you’ve
implemented a point solution that offers a siloed benefit at best, or a net decrease in release velocity and quality at worst.

Instead, you might have considered building a business case around investing in developer experience (DX), the overall
efficiency and effectiveness of the tools and frameworks of your software development lifecycle (SDLC). After all, a great DX
ultimately leads to better DevOps and developer productivity, which is what every executive is looking for today. We’re not
going to focus on what DX is or the best practices you might build your unique use case around—for that, take a look at
our companion eBook,

Instead, let’s focus on what you need to create a compelling, approval-ready business case around DX. We’ll focus on
starting the right conversations to reveal pain points, designing your solution, discovering your “hook,” and ultimately
pitching the impact of DX, whether that’s faster development, smoother learning curves, higher code quality, or beyond.

https://info.devtron.ai/hubfs/PDF%20Assets/Devtron%20-%20Unleashing%20Developer%20Productivity.pdf

Introduction

 Unleashing Developer Productivity: Leveraging Developer Experience As Your Secret Weapon

When developing a business case for DX, your stakeholders are practitioners. Most importantly, your developer customer,
followed by your DevOps or platform engineers who can implement the toolkit and processes to make their lives easier.

Start by getting these folks into the same room for open-ended conversations. Ask them where they are and aren’t satisfied
with the status quo, what challenges they face, and where they see opportunities for improvements. Existing research and
surveys provide helpful waypoints for asking the right questions:

Part 1: Set up the conversation with stakeholders

Tip: When engaging with developer stakeholders, remember to operate from a place of listening, discovering, and collaborating.
This moment is not about informing them or dictating how they should work, but figuring out how you can best use the talent within
your team to deliver solutions that solve their problems.

Consequences of Not Investing in DXTop Priorities Driving Investment in DX

47% of developers and
engineers are overworked

31% struggle with
inefficient processes

83% are concerned
about software reliability

55% were frequently delayed
due to inefficient processes

87% aim to improve developer productivity

85% want to improve the software supply-chain
practices and governance

85% are trying to speed up
release cycle times

83% want to onboard new
developers faster

These conversations are not the only data you need to gather, but they should provide enough context to start developing the
“hook” for your entire business case. What is the headline problem your organization can solve with DX? What returns can you
promise, or costs of maintaining the status quo, will grab leadership’s attention and convince them to commit?

Let’s turn back to the story we started with as an example of a compelling hook.

Instead of stampeding to templatized Kubernetes configurations, you engage developer stakeholders, who complain about the
CI/CD pipeline, which creates downtime during execution and doesn’t include intuitive debugging and testing tools. They know
they’re releasing slower and rolling back more deployments than industry average, leading you to the compelling conclusion that
better DX around quality and delivery could save large—and valuable—chunks of developers’ time.

The new hook isn’t just more relevant to core developer pains—it’s also far more understandable and compelling to the
results your leadership are most interested in.

We could save each DevOps/platform
engineer 1 hour/day from responding
to developer requests or maintaining the
software delivery pipeline, freeing them to
work on production stability. This results in
560 working hours per year (assumes
2 engineers) or ¼ of an additional DevOps
engineering resource.

We could save each developer 45
minutes/day by investing in a CI/CD
pipeline and testing tools with better
DX, resulting in 4,200 working hours per
year (assumes 20 developers) — equal
to bringing in another 1 ¾ developer
resources to focus on writing more
business functionality.

Before

After

Part 2: Compile existing data, potential impact,
and your solution
With the first part of your discovery process behind you, and your hook drafted, you’ve built a reasonably mature
business case. You have a problem (a slow and often-faulty release cycle), and a specific goal (a 2X improvement in
error-free release frequency), but your story still has gaps your leadership will certainly ask about.

Setting &Hook Rising insights Aha Moment

Solution & Next Steps

Background on current
situation, character(s) & hook

Supporting details that reveal deeper
insights into the problem or opportunity

Major finding or
central insight

Potential options &
recommendation

Audience’s knowledge is enriched
& likelihood to act is increased

Building Your Presentation

Question: What data supports the hook and story behind the investment you propose?

Next, you need to understand where your organization fits against the industry average in the areas you're focused on
improving through DX. These data become your levers for crafting your solution and confidently predicting the outcome.
There is no one-size-fits-all template for gathering relevant metrics about DX. Let your stakeholder conversations and
in-development hook guide you, with the following as just a sub-section of the possibilities:

Retention rates, which
point to burnout,
dissatisfaction, or a lack
of career development.

Project success around cost, feature
completion, and customer satisfaction,
revealing how well teams collaborate
around big-picture goals.

Time to first contribution from a new hire,
signaling the complexity of your SLDC and
whether folks feel empowered to contribute.

Surveys that can identify
trends or problem areas
in developer wellbeing.

Performance metrics, like deployment frequency and
change failure rate as defined by DevOps Research
and Assessment (DORA), which can identify where
your organization compares to industry averages.

Code quality, derived from peer code
reviews, which identifies gaps in
standards and compliance that could
have downstream consequences on quality.

Question: What happens if we do nothing?

Leaders inevitably seek investments that overcome the risk inherent with any major tooling or process change, and one of
the best ways to convince them to commit is by clearly stating what they lose in opportunity cost if they fail to act on time.
Based on your conversations and research, you’ll want to determine how the status quo impedes their long-term goals.

Are they most concerned about a further slippage of failure rates? Even slower release frequency? Are they worried about
increased customer churn due to a lack of innovation and platform improvements, or are they worried about their most
talented developers leaving due to intense burnout?

Calculating the cost of doing nothing is where a good business plan transitions from focusing on the customer
(the developer) to your audience (leadership). A CTO, COO, and CEO have different perspectives, demands, and levels
of technical expertise—make sure you frame your opportunity costs around their awareness and top-level challenges.
They might not care about reducing developer downtime, but they will certainly be interested in how that exposes new
opportunities, like revenue growth or a faster time to market.

Doing something costs something. Doing nothing costs something.
And, quite often, doing nothing costs a lot more!

Ben Feldman

Question: What is your situational assessment?

With an opportunity cost analysis and clarity through data, you’re ready to solidify your situational assessment.
These come in many forms and different methodologies, which we’ll let you explore on your own, but your audience
will expect you to answer the following questions at a minimum:

Continuing the example story of trying to reduce defects and cut back on
downtime, you might calculate that not improving DX could cost
your organization hundreds of developers hours every year, delaying
the delivery of the average project by two weeks at a significant run-on
cost. To address the ongoing DX issues, you propose creating a
“golden path” of tools for any developer building, configuring, and
deploying on your infrastructure, including a streamlined CI/CD pipeline
and new tools for end-to-end testing and validating Kubernetes
configuration against policy.

Based on your interviews and data collection, you validate your earlier
prediction, where this DX-rich golden path will save every developer
an average of 45 minutes/day/developer by helping them catch quality
issues earlier and consistently deploy to production without error.

What is the core problem?
Which type of investment will improve or resolve said problem?
What tools and processes will get the job done?
How long will the project take, and who will need to be involved?
What is your predicted outcome?

BUILD

CONFIGURE

DEPLOY

Part 3: Build a compelling business case for DX
You’ve done your research and background, and have designed a technical- and process-based solution to an
ongoing problem you can solve with DX. Now is not the time for wild assumptions, guesses, or fuzzy math, and
your ambitions should go beyond building a bullet-pointed PowerPoint presentation you read off verbatim
to your leadership.

How you design and format your business case is up to you. First and foremost, you’re aiming for a story that
compels your leadership to commit to change because you’ve effectively illustrated how the business drivers
they care about most will be positively impacted by this vague-sounding idea of developer experience. You’ll
also need to back up your claims with data, analysis, and carefully-crafted estimations —while you tell your story,
make sure you weave in these four key elements:

Remember that you’re trying to reframe this fuzzy concept of developer experience into a tangible and
immediately understandable business value. You’ve already created the framework of your hook, but now is
the time to sharpen it down into a sentence or two that clarifies the problem, your solution, and the positive
impact of investing.

If you’re struggling, lean on your team, peers, and network to gather feedback and refine your messaging.
You can even develop new options using a copywriting and marketing framework like AIDA to attract attention
to a problem and heighten their desire for a solution.

Lead with your hook

Cover off people, processes, and tooling.

As part of your situational assessment, you should have described exactly how you propose achieving the goal.
This is your opportunity to address who will drive this project, what they’ll implement, and which established industry
best practices you’ll follow. In our companion eBook on DX, we laid out several proven DX strategies, like improving
documentation, encouraging regular feedback, adding deeper observability, and encouraging developer self-service.

Like a powerful resume, specificity matters here. Instead of saying that you’re going to “improve your CI/CD pipeline to
remove developer downtime,” specify exactly where the downtime exists, why that’s an issue, and what changes
or new tooling will smooth out those gaps.

People

Processes Tooling

Issue
Ch

an
ge

Impact

Break down all your costs.

Begin with the initial cost of new platforms, licenses, and additional cloud expenditure, along with the number of
engineers and hours/days/weeks they’ll devote to this project. A strong business plan includes a specific estimation,
not a fuzzy estimate—cost estimates can always be revised, but a successful business case hinges on confidence.
Consider using the knowledge provided by your tooling vendor, as they can provide good estimates of how long
implementation takes and how many resources are required.

End the cost conversation with a section on the cost of doing nothing. You should already have data and strong
opinions here, gathered in Part 2 of this process. Including it here ensures your leadership understands that while any
major investment comes with risk, there are also specific risks in maintaining the status quo.

You should also tally up
your plan's total cost including
migration, long-term maintenance,
possible downtime, ongoing
license costs, and anything else
that adds up beyond your
proposed start and end dates.

Migration Cost

Maintenance Cost

Downtime Cost

License Cost

TCO

Showcase the potential.

Time to drive the impact of making a proactive investment in DX home. Bubble up all your impacts into a “holistic” ROI
that resonates with your leadership audience—while they certainly wouldn’t turn away taking time or minimizing errors
deployed to production, they will be much more interested in how those efficiencies enable your organization at large. If
you’re still looking for ways to frame the conversation around C-suite priorities, Forrester found that DX investment led to
moderate-to-significant business improvements in the following areas:

Let’s return to our example DX initiative one last time to illustrate what you should aim for. You estimate that your “golden
path” saves, on average, 45 minutes/day/developer, which translates to 75 wasted development hours per week across
your team of 20 developers.

For an investment of two DevOps engineers and a business quarter, which translates to roughly 1,000 engineer hours,
investing in DX “pays off” the time spent in roughly 13 weeks. Even when you add $2,500/month in new tooling costs, the
compounding effect of saving 300 hours in developer time every month results in net savings for your organization.
With those extra hours, developers can also reduce time to market by 10%, which results in healthy revenue growth and
better positioning against the competition—all results your leadership audience will be more than happy to green-light.

85% revenue growth

84% competitive position

82% customer satisfaction

81% revenue growth

77% time to market

Developer experience is a powerful solution, one fully validated by other organization’s investments, to some of the
biggest inefficiencies in your SDLC. You now have a process for building a business case around it, from identifying
problems starting the right conversations with your developer customers/stakeholders, and gathering data that
illustrates your status quo and gives you clear goals to propose and work toward.

You have two paths forward:

If you’re ambitious and prefer to go it alone, we wish you the best of luck! Hopefully we’ve provided a great framework
for you to follow as you build out your business case.

If you know DX should be a priority but can’t quite find the right angles, let the folks at Devtron help. We’ve worked on
DX from every possible angle, so we have all the resources and calculators to help you figure out your opportunity
costs and possible return on investment. We’ll work with you to develop a business case around our Kubernetes
software delivery platform and the successes our customers have already achieved.

Whichever you choose, remember that while any investment in DX requires a positive return, it’s also a path toward
better collaboration, deeper empathy, and more tight-knit collaboration for the long haul. These impacts might not
appear on the bottom line, but they are necessary for the long-term health of your engineering and development
teams. When you break down one silo, you find a new opportunity for the next stage of your continuous improvement.

Conclusion

https://twitter.com/DevtronL https://github.com/devtron-labs/devtronhttps://devtron.ai https://www.linkedin.com/company/devtron-labs

